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Point-source scalar turbulence
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The statistics of a passive scalar randomly emitted from a point source is investigated
analytically for the Kraichnan ensemble. Attention is focused on the two-point equal-
time scalar correlation function, a statistical indicator widely used both in experiments
and in numerical simulations. The only source of inhomogeneity/anisotropy is the
injection mechanism, the advecting velocity being here statistically homogeneous and
isotropic. The main question we address is on the possible existence of an inertial
range of scales and a consequent scaling behaviour. The question arises from the
observation that for a point source the injection scale is formally zero and the
standard cascade mechanism cannot thus be taken for granted. We find from first
principles that an intrinsic integral scale, whose value depends on the distance from
the source, emerges as a result of sweeping effects. For separations smaller than
this integral scale a standard forward cascade occurs. This is characterized by a
Kolmogorov–Obukhov power-law behaviour as in the homogeneous case, except that
the dissipation rate is also dependent on the distance from the source. Finally, we also
find that the combined effect of a finite inertial-range extent and of inhomogeneities
causes the emergence of subleading anisotropic corrections to the leading isotropic
term, that are here quantified and discussed.

1. Introduction
Turbulent fields whose statistical properties are invariant under translation

and rotation in space are particularly interesting to theorists. They represent a
formally simple setup allowing neglect of additional ‘complications’ introduced by
the boundaries of the system or external driving mechanisms. However, in most
situations of interest, such complications might play a crucial role in determining
the statistical properties of the turbulent field. For example, this is the case in
channel-flow turbulence, where statistical invariance under translation and rotation
(i.e. homogeneity and isotropy) is restricted to a small region around the centre of
the channel, while it is totally lost close to the walls (Toschi et al. 1999).

In the last few years, important achievements have been made, both in the method
of analysis and the level of comprehension, in relation to the effects on the small-
scale statistics (i.e. the statistics at scales much smaller than the integral scale) of
anisotropic large-scale contributions (see Biferale & Procaccia 2005, for a review).
The situation is much less clear regarding the role of inhomogeneities in determining
the statistics of small-scale turbulence. In particular, it is not clear if inhomogeneities,



190 A. Celani, M. Martins Afonso and A. Mazzino

activated by boundaries and/or initial conditions, might disappear at small scales
owing to cascade processes, which tend to eliminate the detailed memory of the
large-scale dynamics. Understanding the above aspects is relevant to applications
related, for example, to small-scale subgrid parameterizations. Modern approaches
to closure problems commonly use scaling exponents as the basic ingredients to
build subgrid-scale models. The best examples are the fractal (Scotti & Meneveau
1997) and multifractal (Basu, Foufoula-Georgiou & Porté-Agel 2004) interpolation
schemes (for a general review highlighting the role of scaling exponents in subgrid
parameterizations, see Meneveau & Katz 2000). How to define scaling exponents in
the presence of anisotropies became clear only very recently (Biferale & Procaccia
2005). The situation is different in the presence of inhomogeneities, where, up to
now, basic questions related to the existence of scaling behaviour, and thus of scaling
exponents, still have to be seriously addressed.

The main aim of our paper is to give quantitative answers to the above questions.
To do that, we will focus on passive scalar turbulence, where the scalar is randomly
emitted from a point source. This is the simplest way to mimic the release of a pollutant
from a chimney. The injection mechanism is thus intimately inhomogeneous and the
question of how this inhomogeneity eventually reflects on the small-scale scalar
statistics can be addressed. In order to carry out the study in analytical terms, we will
assume a white-in-time, homogeneous, random process to model the velocity-field
statistics (Kraichnan 1968, 1994).

The paper is organized as follows. In § 2 we formulate the problem in the context
of the Kraichnan advection model with inhomogeneous forcing and we adopt simple
mathematical techniques to obtain the equation for the two-point equal-time scalar
correlation function, whose general solution is provided in § 3 for a point-source
emission. In § 4 we focus on the process of local cascade which represents an interesting
example of the persistence of inhomogeneity at small scales. Section 5 deals with the
interplay between inhomogeneity, anisotropy and finite-size effects, which provides
a correction to the dominant isotropic behaviour. Conclusions and possible future
developments follow in § 6. The Appendix is devoted to the reformulation of the
problem in a finite box in the presence of periodic boundary conditions.

2. Basic equations
2.1. Kraichnan advection model

Let us consider a passive scalar field θ(x, t) transported by a turbulent flow:

∂tθ + v · ∂θ = κ∂2θ + f, (2.1)

where κ is the molecular diffusivity. The incompressible velocity field v(x, t) is assumed
statistically homogeneous and isotropic, whereas the source term f (x, t) is allowed
not to be invariant under translations: a relevant example is provided by the emission
of a tracer from a point source, located e.g. at the origin.

Let us now specialize to the Kraichnan ensemble (Kraichnan 1968, 1994), where
the velocity is a Gaussian, zero-average, white-in-time field with two-point correlation
function 〈vµ(x1, t1)vν(x2, t2)〉 = Dµν(x1 − x2)δ(t1 − t2), where

Dµν(r) = D0δµν − dµν(r). (2.2)

The second-order moment of the velocity increments is given by

dµν(r) = D1r
ξ
[
(d + ξ − 1)δµν − ξ

rµrν

r2

]
(2.3)
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for r = |r| smaller than the integral scale of the velocity field (Lv), above which dµν(r)
saturates to an almost constant value with order of magnitude D1L

ξ
v . Consequently,

since the correlation Dµν(r) must vanish for r → ∞, the relation D0 ∼ D1L
ξ
v holds.

Here, d is the space dimension (� 2) and ξ is the scaling exponent, describing
the degree of roughness present in the velocity field, lying in the interval (0, 2). As ξ

increases the velocity field becomes increasingly smoother and eventually differentiable
at ξ = 2.

The two-point equal-time correlation function C(x1, x2, t) = 〈θ(x1, t)θ(x2, t)〉 may
be expressed as a function of the centre of mass z = (x1 + x2)/2 and of the separation
r = x1 − x2. In these coordinates the equation for the correlation function C(r, z, t)
follows from the application of a standard functional method of stochastic calculus
called Gaussian integration by parts (Furutsu 1963; Novikov 1965; Donsker 1964).
The equation is

∂tC = [2κδµν + dµν(r)]
∂2C

∂rµ∂rν

+
(D0 + 2κ)δµν + Dµν(r)

4

∂2C

∂zµ∂zν

+ F, (2.4)

where F (r, z) represents the correlator 〈θ(x1, t)f (x2, t) + θ(x2, t)f (x1, t)〉.
Two cases appear to be relevant, also in connection with applications: a constant

emission from a point source and an emission random in time (but still punctual in
space). The former case turns out to be quite cumbersome to attack by analytical
methods and is still under investigation. Here, we shall focus on a Gaussian, zero-
average, white-in-time forcing representing a random emission from the origin.
Namely, f (x, t) = f0(t)δ(x) with 〈f (x1, t1)f (x2, t2)〉 = F0δ(x1)δ(x2)δ(t1 − t2), so that
F (r, z) = F0δ(r)δ(z). As we shall see in detail, this case is amenable to analytical
treatment.

2.2. Fourier transform and SO(d) decomposition

Let us now come back to (2.4). Fourier transforming it in z and defining

Ĉ(r, q, t) =

∫
dd z e−iq · zC(r, z, t), F̂ (r, q) =

∫
dd z e−iq · zF (r, z),

we obtain

∂t Ĉ = [2κδµν + dµν(r)]
∂2Ĉ

∂rµ∂rν

− (D0 + 2κ)δµν + Dµν(r)
4

qµqνĈ + F̂ . (2.5)

In the present case, the forcing-correlation transformed F̂ = F0δ(r) is independent of
the wavenumber.

Equation (2.5) is differential only in r and is algebraic in the centre-of-mass
wavenumber q. The second term on the right-hand side represents the inhomogeneous
contribution and consistently vanishes for q = 0, which is equivalent to an average all
over the space. It is convenient to rewrite its r-dependent coefficient in the following
way:

− (D0 + 2κ)δµν + Dµν(r)
4

= −
[
D0 + κ

2
− (d − 1)(d + ξ )

4d
D1r

ξ

]
δµν

+
ξ

4d
D1r

ξ
(
δµν − d

rµrν

r2

)
. (2.6)

Substituting it back, it is clear that the last term in (2.6) generates the only contribution
in (2.5) not invariant under rotations of r , because it gives rise to a scalar product
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between r and q that mixes different angular sectors. However, at separations r � Lv ,
a simplification is possible, since, in that case, the order of magnitude of dµν(r) ≈ D1r

ξ

is negligible with respect to D0 ∼ D1L
ξ
v . Therefore, Dµν(r) 	 D0δµν and the right-hand

side of (2.6) simplifies to −(D0 + κ)δµν/2. Note that, when r is of the order of (or
larger than) Lv , a coupling between anisotropy and inhomogeneity takes place: we
shall come back to this point in § 5, where the consequences of keeping the full form
(2.6) into account will be discussed. Here, we concentrate on the case r � Lv in
the stationary state with vanishing diffusivity† and we can thus consider the simpler
equation

dµν(r)
∂2Ĉ

∂rµ∂rν

− 1

2
D0q

2Ĉ + F̂ = 0. (2.7)

A dimensional-analysis balance between the first and the second term in (2.7) leads
to the introduction of a new scale

�q =

[
q2D0

2(d − 1)D1

]−1/(2−ξ )

,

which is associated with the strength of the scalar inhomogeneities and measures the
separation above which they become relevant. A decomposition into the spherical
harmonics (Biferale & Procaccia 2005),

Ĉ(r, q) =
√

Ω
∑
l,m

Ĉl,m(r, q)Yl,m(Φ), F̂ (r, q) =
√

Ω
∑
l,m

F̂l,m(r, q)Yl,m(Φ),

with Φ denoting the solid angle associated with r and Ω its overall value, yields the
following equation for Ĉl,m(r, q) in each sector:

r−(d−1)∂rr
d+ξ−1∂rĈl − (d + ξ − 1)l(d − 2 + l)

d − 1
r−2Ĉl − �−(2−ξ )

q Ĉl + ϕl = 0. (2.8)

Note that, because of foliation on l and degeneration, we have dropped the dependence
on the subscript m and we have introduced the rescaled forcing ϕl(r) = F̂l(r, q)/
(d − 1)D1 (independent of q because of the punctual nature of the source).

3. General solution
The general solution of (2.8), as a function of r and �q , reduces to the zero mode

(Martins Afonso & Sbragaglia 2005)

Ĉl(r; �q) = w−ν0 [AlKνl
(w) + BlIνl

(w)], (3.1)

where

w = 2(2−ξ )−1(r/�q)
(2−ξ )/2, νl = [(d+ξ −2)2+4(d+ξ −1)l(d−2+l)/(d−1)]1/2/(2−ξ ).

To determine the coefficients Al and Bl , one can approximate the Dirac δ by a
Heaviside Θ (i.e. δ(r) = limL→0[Θ(L − r)/L]), exploiting the vanishing of ϕl in all the
anisotropic sectors l �= 0:

δ(r) =
r−(d−1)

Ω
δ(r) = lim

L→0

r−(d−1)

ΩL
Θ(L − r) ⇒ ϕl=0(r) = lim

L→0

F0r
−(d−1)

(d − 1)D1ΩL
Θ(L − r).

† Attention should, in principle, be paid to the limit of vanishing diffusive scale, but for the rough
flows (ξ �= 2) considered here no commutation problem arises with the limit of vanishing forcing
correlation length L.
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It must be stressed that, in this way, the point source is obtained as a limit of a
forcing having positive Corrsin integral Q0 ≡

∫
dd r F̂ (r, q) = F0. The case Q0 = 0

(Falkovich & Fouxon 2005; Celani & Seminara 2005, 2006) will be left for future
investigation.

Studying the solution for r < L also, matching the solution Ĉl and its first derivative
in r = L, imposing regularity for small r and vanishing for large r (Martins Afonso &
Sbragaglia 2005), and finally taking the limit L → 0, one finds Bl = 0 ∀l and

Al =

(
2 − ξ

2

)ν0

�(d−ξ+2)/2
q lim

L→0

∫ W

0

dω ϕl(ρ)ων0+1Iνl
(ω) = δl,0k†

F0

D1

�2−d−ξ
q ,

where ω ≡ w|r=ρ = 2(2 − ξ )−1(ρ/�q)
(2−ξ )/2, W ≡ w|r=L = 2(2 − ξ )−1(L/�q)

(2−ξ )/2 and
k† = 2(2 − ξ )−d/(2−ξ )/(d − 1)Ω�(ν0 + 1) (�( · ) being Euler’s function).

In the pseudospectral space (r, q) the scalar-correlation transformed thus coincides
with its isotropic projection and depends only on the moduli r and q (i.e. �q) as

Ĉ(r; �q) = k†
F0

D1

�−(d+ξ−2)/2
q r−(d+ξ−2)/2Kν0

(w).

Back in the physical space, the correlation is thus independent of the angle between
r and z and is a function of r and z only:

C(r, z) = k‡
F0

D1

(
D1

D0

)d/2

rdξ/2−2d−ξ+2

[
1 +

Ω(2 − ξ )2

4π

D1

D0

z2r−(2−ξ )

]− d(4−ξ )
2(2−ξ )

+1

. (3.2)

For d = 2, k‡ = k†2
−2π−1(2 − ξ )(4−ξ )/(2−ξ )�[2/(2 − ξ )], whereas for d = 3, k‡ =

k†2
−1π−3/2(2 − ξ )(7−2ξ )/(2−ξ )�[3/2 + (1 + ξ )/(2 − ξ )].

Note that the behaviour C ∼ r−(d+ξ−2), which is typical of the homogeneous
situation (Falkovich, Gawȩdzki & Vergassola 2001) for r � L, is not observed in
this case (even if L = 0), unless one integrates the correlation over the whole
space, thus averaging out the inhomogeneity and defining the contribution in the
homogeneous ‘sector’. In the pseudo-spectral space, this last operation is equivalent
to considering q = 0 (⇒ �q → ∞ ⇒ w = 0) and thus corresponds to taking into
account only the leading term in the development of Kν0

(w) for small arguments.

4. Local cascade and small-scale persistence of inhomogeneity
Recalling that the ratio D1/D0 appearing in (3.2) is of the order of L−ξ

v , two
opposite developments are worth persuing, corresponding to small or large values of
the quantity

s ≡
(z

r

)2
(

r

Lv

)ξ

. (4.1)

This defines a new characteristic length scale,

Lz ≡ z2/(2−ξ )L−ξ/(2−ξ )
v , (4.2)

dependent (monotonically) on z and whose meaning as the local integral scale of
scalar turbulence will be clear shortly.

For small s (i.e. r � Lz) the correlation is approximated by a power law in r ,
C ∼ L−dξ/2

v r−d(4−ξ )/2+2−ξ . On the other hand, for large s (i.e. r � Lz), a power law in
z is found, and r appears only in subleading terms:

C(r, z) ∼ 〈θ2(z)〉 − const. × ε(z)r2−ξ . (4.3)
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Here, 〈θ2(z)〉 ≡ (F0/D1)L
ξ (d+ξ−2)/(2−ξ )
v z2−d(4−ξ )/(2−ξ ) and ε(z) ≡ 〈θ2(z)〉/L2−ξ

z represent
the scalar variance and the local dissipation, respectively.

Expression (4.3) proves that, at scales smaller than Lz (i.e. for r sufficiently smaller
than z, according to the value of Lv), the increment of the two-point equal-time
correlation function has the same behaviour as the homogeneous case (power law in
r with exponent 2− ξ : see e.g. Falkovich et al. 2001) at scales smaller than the forcing
integral scale L. This result suggests that a cascade-like mechanism might be present
also in this case, even if here r > L by construction.

This possibility can be supported by the following considerations. The velocity field
sweeps the scalar, initially concentrated where it was released, and generates structures
which, ∀x1, are correlated on the scale x1. This amounts to saying that correlations
between each point x1 and the origin x2 = 0 are created. In the centre-of-mass frame
of reference, this means that at every point z (= x1/2) a local cascade can then take
place, starting from separations r sufficiently smaller than z.

The quantity Lz thus plays the role of an effective local forcing correlation length:
the word ‘local’ here refers to the fact that, whereas in the homogeneous situation
the prefactors are expressed in terms of constant quantities, in this case a dependence
of 〈θ2(z)〉 and ε(z) on the point still persists. It is also worth noticing from (4.2)
that, for very rough flows (ξ → 0), Lz becomes proportional to z, consistently with
the impossibility of a consistent definition of Lv . On the other hand, for almost
smooth flows (ξ → 2), one finds Lz ∼ (z/Lv)

2/(2−ξ ), critically dependent on whether
the centre-of-mass distance from the source lies within the velocity correlation range.

This physical interpretation of local cascade can easily be supported mathematically
by considering the physical-space counterpart of (2.7), i.e. the simplified form of (2.4)
with the usual approximations r � Lv and κ = 0 = ∂t :

dµν(r)
∂2C

∂rµ∂rν

+
D0

2

∂2C

∂zµ∂zµ

+ F = 0. (4.4)

In the homogeneous case, the absence of any dependence on z gives rise to the
convective-range balance

dµν(r)
∂2C

∂rµ∂rν

= −F (r); (4.5)

the derivative with respect to r of the left-hand side of (4.5) vanishes in the presence
of a constant corresponding right-hand side, as is often the case. On the other hand,
with point-source forcing, away from the origin, the balance (4.4) should be written
as

dµν(r)
∂2C

∂rµ∂rν

= −D0

2

∂2C

∂zµ∂zµ

, (4.6)

but the vanishing of the derivative of the left-hand side of (4.6) still occurs for r

sufficiently smaller than z. This is shown in figure 1, which also reflects how this
interpretation has its validity limit affected by a change in the ratio r/Lv appearing
in the adimensional parameter s (4.1). One should indeed remember that the three
scales r , z and Lv appear in a non-trivial way in s, whose magnitude is the key point
of approximation (4.3) and its consequences.

The present case thus represents an interesting example of a situation in which
inhomogeneity persists at small scales, as the behaviour C ∼ r2−ξ observed at small
r does not correspond to what was defined at the end of § 3 to be interpreted as the
homogeneous counterpart (C ∼ r−(d+ξ−2)).
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Figure 1. Derivative of the left-hand side of equation (4.6) with respect to r , plotted vs z/r
for ξ = 4/3 and d = 3. It is evident how the ratio r/Lv , labelling the three curves, affects the
limits of the range in which approximation (4.3) is valid and a constant flux holds.

5. Finite-size effects and anisotropic contributions
A comment is required about the relevance of the so-called finite-size effects. In

other words, one would like to quantify the error deriving from the approximation
r � Lv , which was used to simplify (2.6) and thus to decouple inhomogeneity from
anisotropy. This quantification becomes possible, if one proceeds in the following way.
First, note that, after the decomposition into spherical harmonics, no more foliation
takes place. Namely, the equation for the isotropic sector is still a closed one (with
the appearance of a new term, according to the contribution within square brackets
in (2.6)),

r−(d−1)∂r

(
rd+ξ−1∂rĈ0

)
− �−(2−ξ )

q

[
1 − (d + ξ )D1

2d(d − 1)D0

rξ

]
Ĉ0 + ϕl=0(r) = 0,

and gives

Ĉ0 ∝ r−(d+ξ−2)/2Kν0
(w)

[
1 + O

(
r

Lv

)ξ
]

, (5.1)

but Ĉ0 now enters the equation for l = 2 as a forcing term (the l = 1 sector remains
unforced because this procedure only couples even sectors, as can be deduced by
decomposition (2.6)). A simple power-counting operation is possible in Fourier space
for r � �q , where (specifying the order of the error in the development of Kν0

(w) for
small arguments)

Ĉ0 ∝ r−(d+ξ−2)

[
1 + O

(
r

�q

)2−ξ
]

. (5.2)

As a result, in this regime one easily obtains

Ĉ2 ∼ L−ξ
v �−(2−ξ )

q r−(d+ξ−4) ∼
(

r

Lv

)ξ (
r

�q

)2−ξ

Ĉ0. (5.3)
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Equation (5.3) shows that the first excited anisotropic sector carries a factor, with
respect to the isotropic solution, given by the product of the corrections in (5.1) and
in (5.2). Its interpretation is thus very simple and useful: at the lowest order, the
most relevant anisotropic correction derives from the coupling of finite-size effects
(O(r/Lv)

ξ ) and inhomogeneities (O(r/�q)
2−ξ ).

It can also be shown that, in the opposite situation (r � �q), Ĉ2 is still given by the
right-hand side of (5.3) but without the factor (r/�q)

2−ξ . This implies that, back in
the physical space, the leading contribution is always the isotropic one, provided that
r � Lv . The higher-l anisotropic terms Ĉ4, Ĉ6, etc. are indeed smaller and smaller,
because they are forced by the (small) quantities Ĉ2, Ĉ4, etc. respectively.

Such anisotropic corrections are expected to play a non-negligible role only when
the scales r and z are comparable, but not when either is much greater than the other.
An example of the former case is provided, for z = r/2, by the comparison between
the situations z ‖ r (where one of the two points in which the correlation is calculated

lies at the source) and z ⊥ r (where both points are
√

2z away from the origin): a
difference must clearly exist, but cannot be caught by the isotropic function C0(r, z)
and turns out to be subdominant. On the other hand, if r � z the two points are
almost symmetric with respect to the origin, and if r � z their relative separation is
much smaller than their distance from the source: in both cases, a rotation of r with
fixed z would change little. Of course, the problem is always invariant under rigid
rotations of the whole space (and thus of both vectors r and z) around the origin.

6. Conclusions and perspectives
The dynamics of a passive scalar released from a point source has been investigated

in this paper, as a prototype of inhomogeneity. Focusing on the Kraichnan advection
model with Gaussian, white-in-time and zero-mean forcing, it has been possible to
study analytically the two-point equal-time scalar correlation function and to prove
the persistence of inhomogeneity at small scales, in the spirit of the local cascade
process described in § 4. Still to be understood in more detail is the interplay between
inhomogeneity, anisotropy and finite-size effects mentioned in § 5.

An interesting open problem is the extension of our calculation to higher-order
scalar correlation functions, with the aim of corroborating our results obtained for
the two-point correlation function.

Another natural extension of the present work would be the study of a point source
not satisfying the aforementioned hypotheses, e.g. a constant-in-time scalar emission.
This situation is already under investigation, and a fully analytical study should be
completed by numerical results. A related issue is understanding how these results
should change in the presence of smooth flows (ξ = 2).

Inhomogeneities were here limited to the forcing term, while the velocity field
was assumed homogeneous and isotropic. It would be of interest to reformulate the
problem with velocity ensembles not invariant under translation, so as to deal with
a completely inhomogeneous situation. Moreover, whenever the Kraichnan model is
used, the question of a possible extension to more realistic flows arises: numerical
simulations would thus be required to test the present results with solutions of the
Navier–Stokes equation.

Lastly, a coarse-grained description might be applied to the present case, with the
aim of finding large-scale closed equations and an explicit exact parameterization for
the small scales, accounting for the effects of inhomogeneities. The infrared limit of
the theory for the passive scalar has already been introduced with good results in
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the homogeneous isotropic case (Martins Afonso et al. 2003; Martins Afonso, Celani
& Mazzino 2004; Celani, Martins Afonso & Mazzino 2005, 2006). The extension to
inhomogeneous cases is in order, in particular using the point-source problem as a
paradigm.

A. M. and M. M. A. have been partially supported by COFIN 2005 project
2005027808 and by CINFAI consortium. Part of this work has been done within the
2006 CNR Short-Term Mobility programme (A. M.). M. M. A. acknowledges useful
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Appendix. Periodicity and discrete spectrum
It is interesting to reformulate the point-source problem in a finite d-dimensional

box of side a with periodic boundary conditions, which is equivalent to considering
an infinite d-dimensional grid of point sources with mesh size a. It can easily
be shown that, upon Fourier transforming, the forcing-correlation spectrum is no
longer continuum and flat, but is active only on a discrete set of wavenumbers
(qk = 2πk/a, ∀k ∈ �d) with uniform intensities. In order to reconstruct the correlation
function C(r, z) it is thus sufficient to analyse the discrete values Ĉ(r, qk) (we will
only focus on the isotropic sector l = 0).

For k = 0 = qk, the pure homogeneous scaling behaviour Ĉ ∼ r−(d+ξ−2) is
obviously found. For k �= 0, this power law is replaced by Bessel functions, which
can in turn be expanded in Taylor series, with a result analogous to (5.2). That
is, for each wavenumber the leading behaviour for small r is always given by the
same homogeneous contribution, but for a fixed r the corrections to such a term
become more and more relevant with growing modulus of qk. When antitransforming,
one would be tempted to extrapolate such leading behaviour from each mode and
conclude that C ∼ r−(d+ξ−2) for small r also upon superposition. This is clearly not the
case, as the behaviour C ∼ r2−ξ is found for small r . In other words, it is not possible
to exchange the Taylor and Fourier series, corresponding to the power expansion
of the Bessel function and to the discrete antitransform respectively, because of the
absence of uniform convergence.

Note that, here, we did not assume any power-law behaviour for each mode
(differently from what is usually done in each anisotropic sector upon SO(d)
decomposition), coherently with the result that for each wavenumber we obtain
a Bessel function, i.e. an infinite superposition of power laws.
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